Source code for lightning.fabric.plugins.precision.transformer_engine

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Mapping
from contextlib import AbstractContextManager
from typing import TYPE_CHECKING, Any, Literal, Optional, Union

import torch
from typing_extensions import override

from lightning.fabric.plugins.precision.precision import Precision
from lightning.fabric.utilities.imports import _raise_enterprise_not_available

if TYPE_CHECKING:
    from transformer_engine.common.recipe import DelayedScaling


[docs]class TransformerEnginePrecision(Precision): """Plugin for training with fp8 precision via nvidia's `Transformer Engine <https://docs.nvidia.com/deeplearning/transformer-engine>`__. .. warning:: This is an :ref:`experimental <versioning:Experimental API>` feature. Args: weights_dtype: The weights dtype to use. recipe: Recipe for the DelayedScaling `configuration <https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html#transformer_engine.common.recipe.DelayedScaling>`__. In dict format or the dataclass format. replace_layers: Whether to replace ``Linear`` and ``LayerNorm`` layers automatically with their Transformer Engine alternatives. Note that they don't subclass the torch equivalents so checks like ``isinstance(l, torch.nn.Linear)`` will not pass. fallback_compute_dtype: The compute dtype to use for operations that don't support fp8 autocast. Defaults to the same as ``weights_dtype``. .. note:: Support for FP8 in the linear layers with this plugin is currently limited to tensors with shapes where the dimensions are divisible by 8 and 16 respectively. You might want to add padding to your inputs to conform to this restriction. """ precision: Literal["transformer-engine", "transformer-engine-float16"] = "transformer-engine" def __init__( self, *, weights_dtype: torch.dtype, recipe: Optional[Union[Mapping[str, Any], "DelayedScaling"]] = None, replace_layers: Optional[bool] = None, fallback_compute_dtype: Optional[torch.dtype] = None, ) -> None: super().__init__() _raise_enterprise_not_available() from pytorch_lightning_enterprise.plugins.precision.transformer_engine import ( TransformerEnginePrecision as EnterpriseTransformerEnginePrecision, ) self.transformer_engine_impl = EnterpriseTransformerEnginePrecision( weights_dtype=weights_dtype, recipe=recipe, replace_layers=replace_layers, fallback_compute_dtype=fallback_compute_dtype, ) @property def weights_dtype(self) -> torch.dtype: return self.transformer_engine_impl.weights_dtype @weights_dtype.setter def weights_dtype(self, value: torch.dtype) -> None: self.transformer_engine_impl.weights_dtype = value @property def recipe(self) -> Union[Mapping[str, Any], "DelayedScaling"]: return self.transformer_engine_impl.recipe @recipe.setter def recipe(self, value: Union[Mapping[str, Any], "DelayedScaling"]) -> None: self.transformer_engine_impl.recipe = value @property def replace_layers(self) -> bool: return self.transformer_engine_impl.replace_layers @replace_layers.setter def replace_layers(self, value: bool) -> None: self.transformer_engine_impl.replace_layers = value @property def fallback_compute_dtype(self) -> torch.dtype: return self.transformer_engine_impl.fallback_compute_dtype @fallback_compute_dtype.setter def fallback_compute_dtype(self, value: torch.dtype) -> None: self.transformer_engine_impl.fallback_compute_dtype = value
[docs] @override def convert_module(self, module: torch.nn.Module) -> torch.nn.Module: return self.transformer_engine_impl.convert_module(module)
[docs] @override def tensor_init_context(self) -> AbstractContextManager: return self.transformer_engine_impl.tensor_init_context()
[docs] @override def module_init_context(self) -> AbstractContextManager: return self.transformer_engine_impl.module_init_context()
[docs] @override def forward_context(self) -> AbstractContextManager: return self.transformer_engine_impl.forward_context()
[docs] @override def convert_input(self, data: Any) -> Any: return self.transformer_engine_impl.convert_input(data)
[docs] @override def convert_output(self, data: Any) -> Any: return self.transformer_engine_impl.convert_output(data)
@property def _desired_dtype(self) -> torch.dtype: return self.transformer_engine_impl._desired_dtype @_desired_dtype.setter def _desired_dtype(self, dtype: torch.dtype) -> None: self.transformer_engine_impl._desired_dtype = dtype