# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Weights and Biases Logger
-------------------------
"""
from argparse import Namespace
from collections.abc import Mapping
from typing import TYPE_CHECKING, Any, Literal, Optional, Union
import torch.nn as nn
from typing_extensions import override
from lightning.fabric.utilities.imports import _raise_enterprise_not_available
from lightning.fabric.utilities.types import _PATH
from lightning.pytorch.callbacks.model_checkpoint import ModelCheckpoint
from lightning.pytorch.loggers.logger import Logger, rank_zero_experiment
from lightning.pytorch.utilities.rank_zero import rank_zero_only
if TYPE_CHECKING:
from wandb import Artifact
from wandb.sdk.lib import RunDisabled
from wandb.wandb_run import Run
[docs]class WandbLogger(Logger):
r"""Log using `Weights and Biases <https://docs.wandb.ai/guides/integrations/lightning>`_.
**Installation and set-up**
Install with pip:
.. code-block:: bash
pip install wandb
Create a `WandbLogger` instance:
.. code-block:: python
from lightning.pytorch.loggers import WandbLogger
wandb_logger = WandbLogger(project="MNIST")
Pass the logger instance to the `Trainer`:
.. code-block:: python
trainer = Trainer(logger=wandb_logger)
A new W&B run will be created when training starts if you have not created one manually before with `wandb.init()`.
**Log metrics**
Log from :class:`~lightning.pytorch.core.LightningModule`:
.. code-block:: python
class LitModule(LightningModule):
def training_step(self, batch, batch_idx):
self.log("train/loss", loss)
Use directly wandb module:
.. code-block:: python
wandb.log({"train/loss": loss})
**Log hyper-parameters**
Save :class:`~lightning.pytorch.core.LightningModule` parameters:
.. code-block:: python
class LitModule(LightningModule):
def __init__(self, *args, **kwarg):
self.save_hyperparameters()
Add other config parameters:
.. code-block:: python
# add one parameter
wandb_logger.experiment.config["key"] = value
# add multiple parameters
wandb_logger.experiment.config.update({key1: val1, key2: val2})
# use directly wandb module
wandb.config["key"] = value
wandb.config.update()
**Log gradients, parameters and model topology**
Call the `watch` method for automatically tracking gradients:
.. code-block:: python
# log gradients and model topology
wandb_logger.watch(model)
# log gradients, parameter histogram and model topology
wandb_logger.watch(model, log="all")
# change log frequency of gradients and parameters (100 steps by default)
wandb_logger.watch(model, log_freq=500)
# do not log graph (in case of errors)
wandb_logger.watch(model, log_graph=False)
The `watch` method adds hooks to the model which can be removed at the end of training:
.. code-block:: python
wandb_logger.experiment.unwatch(model)
**Log model checkpoints**
Log model checkpoints at the end of training:
.. code-block:: python
wandb_logger = WandbLogger(log_model=True)
Log model checkpoints as they get created during training:
.. code-block:: python
wandb_logger = WandbLogger(log_model="all")
Custom checkpointing can be set up through :class:`~lightning.pytorch.callbacks.ModelCheckpoint`:
.. code-block:: python
# log model only if `val_accuracy` increases
wandb_logger = WandbLogger(log_model="all")
checkpoint_callback = ModelCheckpoint(monitor="val_accuracy", mode="max")
trainer = Trainer(logger=wandb_logger, callbacks=[checkpoint_callback])
`latest` and `best` aliases are automatically set to easily retrieve a model checkpoint:
.. code-block:: python
# reference can be retrieved in artifacts panel
# "VERSION" can be a version (ex: "v2") or an alias ("latest or "best")
checkpoint_reference = "USER/PROJECT/MODEL-RUN_ID:VERSION"
# download checkpoint locally (if not already cached)
run = wandb.init(project="MNIST")
artifact = run.use_artifact(checkpoint_reference, type="model")
artifact_dir = artifact.download()
# load checkpoint
model = LitModule.load_from_checkpoint(Path(artifact_dir) / "model.ckpt")
**Log media**
Log text with:
.. code-block:: python
# using columns and data
columns = ["input", "label", "prediction"]
data = [["cheese", "english", "english"], ["fromage", "french", "spanish"]]
wandb_logger.log_text(key="samples", columns=columns, data=data)
# using a pandas DataFrame
wandb_logger.log_text(key="samples", dataframe=my_dataframe)
Log images with:
.. code-block:: python
# using tensors, numpy arrays or PIL images
wandb_logger.log_image(key="samples", images=[img1, img2])
# adding captions
wandb_logger.log_image(key="samples", images=[img1, img2], caption=["tree", "person"])
# using file path
wandb_logger.log_image(key="samples", images=["img_1.jpg", "img_2.jpg"])
More arguments can be passed for logging segmentation masks and bounding boxes. Refer to
`Image Overlays documentation <https://docs.wandb.ai/guides/track/log/media#image-overlays>`_.
**Log Tables**
`W&B Tables <https://docs.wandb.ai/guides/tables/visualize-tables>`_ can be used to log,
query and analyze tabular data.
They support any type of media (text, image, video, audio, molecule, html, etc) and are great for storing,
understanding and sharing any form of data, from datasets to model predictions.
.. code-block:: python
columns = ["caption", "image", "sound"]
data = [["cheese", wandb.Image(img_1), wandb.Audio(snd_1)], ["wine", wandb.Image(img_2), wandb.Audio(snd_2)]]
wandb_logger.log_table(key="samples", columns=columns, data=data)
**Downloading and Using Artifacts**
To download an artifact without starting a run, call the ``download_artifact``
function on the class:
.. code-block:: python
from lightning.pytorch.loggers import WandbLogger
artifact_dir = WandbLogger.download_artifact(artifact="path/to/artifact")
To download an artifact and link it to an ongoing run call the ``download_artifact``
function on the logger instance:
.. code-block:: python
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
self.logger.download_artifact(artifact="path/to/artifact")
To link an artifact from a previous run you can use ``use_artifact`` function:
.. code-block:: python
from lightning.pytorch.loggers import WandbLogger
wandb_logger = WandbLogger(project="my_project", name="my_run")
wandb_logger.use_artifact(artifact="path/to/artifact")
See Also:
- `Demo in Google Colab <http://wandb.me/lightning>`__ with hyperparameter search and model logging
- `W&B Documentation <https://docs.wandb.ai/guides/integrations/lightning>`__
Args:
name: Display name for the run.
save_dir: Path where data is saved.
version: Sets the version, mainly used to resume a previous run.
offline: Run offline (data can be streamed later to wandb servers).
dir: Same as save_dir.
id: Same as version.
anonymous: Enables or explicitly disables anonymous logging.
project: The name of the project to which this run will belong. If not set, the environment variable
`WANDB_PROJECT` will be used as a fallback. If both are not set, it defaults to ``'lightning_logs'``.
log_model: Log checkpoints created by :class:`~lightning.pytorch.callbacks.ModelCheckpoint`
as W&B artifacts. `latest` and `best` aliases are automatically set.
* if ``log_model == 'all'``, checkpoints are logged during training.
* if ``log_model == True``, checkpoints are logged at the end of training, except when
:paramref:`~lightning.pytorch.callbacks.ModelCheckpoint.save_top_k` ``== -1``
which also logs every checkpoint during training.
* if ``log_model == False`` (default), no checkpoint is logged.
prefix: A string to put at the beginning of metric keys.
experiment: WandB experiment object. Automatically set when creating a run.
checkpoint_name: Name of the model checkpoint artifact being logged.
add_file_policy: If "mutable", copies file to tempdirectory before upload.
\**kwargs: Arguments passed to :func:`wandb.init` like `entity`, `group`, `tags`, etc.
Raises:
ModuleNotFoundError:
If required WandB package is not installed on the device.
MisconfigurationException:
If both ``log_model`` and ``offline`` is set to ``True``.
"""
LOGGER_JOIN_CHAR = "-"
def __init__(
self,
name: Optional[str] = None,
save_dir: _PATH = ".",
version: Optional[str] = None,
offline: bool = False,
dir: Optional[_PATH] = None,
id: Optional[str] = None,
anonymous: Optional[bool] = None,
project: Optional[str] = None,
log_model: Union[Literal["all"], bool] = False,
experiment: Union["Run", "RunDisabled", None] = None,
prefix: str = "",
checkpoint_name: Optional[str] = None,
add_file_policy: Literal["mutable", "immutable"] = "mutable",
**kwargs: Any,
) -> None:
_raise_enterprise_not_available()
super().__init__()
from pytorch_lightning_enterprise.loggers.wandb import WandbLogger as EnterpriseWandbLogger
self.logger_impl = EnterpriseWandbLogger(
name=name,
save_dir=save_dir,
version=version,
offline=offline,
dir=dir,
id=id,
anonymous=anonymous,
project=project,
log_model=log_model,
experiment=experiment,
prefix=prefix,
checkpoint_name=checkpoint_name,
add_file_policy=add_file_policy,
**kwargs,
)
@property
@rank_zero_experiment
def experiment(self) -> Union["Run", "RunDisabled"]:
r"""Actual wandb object. To use wandb features in your :class:`~lightning.pytorch.core.LightningModule` do the
following.
Example::
.. code-block:: python
self.logger.experiment.some_wandb_function()
"""
return self.logger_impl.experiment
def watch(
self, model: nn.Module, log: Optional[str] = "gradients", log_freq: int = 100, log_graph: bool = True
) -> None:
self.experiment.watch(model, log=log, log_freq=log_freq, log_graph=log_graph)
[docs] @override
@rank_zero_only
def log_hyperparams(self, params: Union[dict[str, Any], Namespace]) -> None:
return self.logger_impl.log_hyperparams(params)
[docs] @override
@rank_zero_only
def log_metrics(self, metrics: Mapping[str, float], step: Optional[int] = None) -> None:
return self.logger_impl.log_metrics(metrics, step)
[docs] @rank_zero_only
def log_table(
self,
key: str,
columns: Optional[list[str]] = None,
data: Optional[list[list[Any]]] = None,
dataframe: Any = None,
step: Optional[int] = None,
) -> None:
"""Log a Table containing any object type (text, image, audio, video, molecule, html, etc).
Can be defined either with `columns` and `data` or with `dataframe`.
"""
return self.logger_impl.log_table(key, columns, data, dataframe, step)
[docs] @rank_zero_only
def log_text(
self,
key: str,
columns: Optional[list[str]] = None,
data: Optional[list[list[str]]] = None,
dataframe: Any = None,
step: Optional[int] = None,
) -> None:
"""Log text as a Table.
Can be defined either with `columns` and `data` or with `dataframe`.
"""
return self.logger_impl.log_text(key, columns, data, dataframe, step)
[docs] @rank_zero_only
def log_image(self, key: str, images: list[Any], step: Optional[int] = None, **kwargs: Any) -> None:
"""Log images (tensors, numpy arrays, PIL Images or file paths).
Optional kwargs are lists passed to each image (ex: caption, masks, boxes).
"""
return self.logger_impl.log_image(key, images, step, **kwargs)
[docs] @rank_zero_only
def log_audio(self, key: str, audios: list[Any], step: Optional[int] = None, **kwargs: Any) -> None:
r"""Log audios (numpy arrays, or file paths).
Args:
key: The key to be used for logging the audio files
audios: The list of audio file paths, or numpy arrays to be logged
step: The step number to be used for logging the audio files
\**kwargs: Optional kwargs are lists passed to each ``Wandb.Audio`` instance (ex: caption, sample_rate).
Optional kwargs are lists passed to each audio (ex: caption, sample_rate).
"""
return self.logger_impl.log_audio(key, audios, step, **kwargs)
[docs] @rank_zero_only
def log_video(self, key: str, videos: list[Any], step: Optional[int] = None, **kwargs: Any) -> None:
"""Log videos (numpy arrays, or file paths).
Args:
key: The key to be used for logging the video files
videos: The list of video file paths, or numpy arrays to be logged
step: The step number to be used for logging the video files
**kwargs: Optional kwargs are lists passed to each Wandb.Video instance (ex: caption, fps, format).
Optional kwargs are lists passed to each video (ex: caption, fps, format).
"""
return self.logger_impl.log_video(key, videos, step, **kwargs)
@property
@override
def save_dir(self) -> Optional[str]:
"""Gets the save directory.
Returns:
The path to the save directory.
"""
return self.logger_impl.save_dir
@property
@override
def name(self) -> Optional[str]:
"""The project name of this experiment.
Returns:
The name of the project the current experiment belongs to. This name is not the same as `wandb.Run`'s
name. To access wandb's internal experiment name, use ``logger.experiment.name`` instead.
"""
return self.logger_impl.name
@property
@override
def version(self) -> Optional[str]:
"""Gets the id of the experiment.
Returns:
The id of the experiment if the experiment exists else the id given to the constructor.
"""
# don't create an experiment if we don't have one
return self.logger_impl.version
[docs] @override
def after_save_checkpoint(self, checkpoint_callback: ModelCheckpoint) -> None:
# log checkpoints as artifacts
return self.logger_impl.after_save_checkpoint(checkpoint_callback)
[docs] @staticmethod
@rank_zero_only
def download_artifact(
artifact: str,
save_dir: Optional[_PATH] = None,
artifact_type: Optional[str] = None,
use_artifact: Optional[bool] = True,
) -> str:
"""Downloads an artifact from the wandb server.
Args:
artifact: The path of the artifact to download.
save_dir: The directory to save the artifact to.
artifact_type: The type of artifact to download.
use_artifact: Whether to add an edge between the artifact graph.
Returns:
The path to the downloaded artifact.
"""
_raise_enterprise_not_available()
from pytorch_lightning_enterprise.loggers.wandb import WandbLogger as EnterpriseWandbLogger
return EnterpriseWandbLogger.download_artifact(artifact, save_dir, artifact_type, use_artifact)
[docs] def use_artifact(self, artifact: str, artifact_type: Optional[str] = None) -> "Artifact":
"""Logs to the wandb dashboard that the mentioned artifact is used by the run.
Args:
artifact: The path of the artifact.
artifact_type: The type of artifact being used.
Returns:
wandb Artifact object for the artifact.
"""
return self.logger_impl.use_artifact(artifact, artifact_type)
[docs] @override
@rank_zero_only
def finalize(self, status: str) -> None:
return self.logger_impl.finalize(status)